ПОЛИЭДР - определение. Что такое ПОЛИЭДР
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ПОЛИЭДР - определение

ОБЪЕДИНЕНИЕ МНОГОГРАННИКОВ, НЕ ОБЯЗАТЕЛЬНО ОДИНАКОВОЙ РАЗМЕРНОСТИ
  • Большой кубикубоктаэдр. Однородный звездообразный многогранник
  • Тороидальный многогранник
  • Икосододекаэдра. Архимедово твердое тело
  • Правильный тетраэдр. Платоново тело
  • Малая звездчатая додекаэдра. Твердое тело Кеплера-Пуансо
Найдено результатов: 19
ПОЛИЭДР         
(от поли ... и греч. hedra - основание, грань), то же, что многогранник.
ПОЛИЭДР         
а, м., геом.
Многогранник, тело, ограниченное со всех сторон многоугольниками. | Разновидности полиэдров: до-декаэдр, икосаэдр, куб, октаэдр, параллелепипед, пирамида1, тетраэдр.||Ср. ПОЛИГОН.
Полиэдр         
(от Поли... и греч. hédra - основание, грань)

1) то же, что Многогранник. 2) Геометрическая фигура, являющаяся объединением (суммой) конечного числа выпуклых многогранников произвольного числа измерений, произвольно расположенных в n-мерном пространстве (в этом смысле, в частности, термин "П." употребляется в топологии (См. Топология)). Это понятие легко обобщается и на случай n-мерного пространства: возьмём в n-мерном пространстве Rn т. н. полупространство, т. е. множество всех точек, расположенных по одну сторону какой-либо (n - 1)-мерной плоскости этого пространства, включая точки самой плоскости (аналитически речь идёт о множестве всех точек пространства Rn, координаты которых удовлетворяют неравенству первой степени вида a1x1 + a2x2 +... + anxn + b 0). Пересечение конечного числа полупространств (если оно оказывается ограниченным) и представляет собой наиболее общий выпуклый многогранник произвольного числа измерений ≤ n, лежащий в данном Rn. П. в общем смысле слова есть сумма конечного числа таких многогранников. При n = 2 получаются многоугольники (не непременно выпуклые) как двумерные П. Одномерные П. суть ломаные линии (причём допускается их распадение на куски, а также ветвление: в одной вершине могут смыкаться сколько угодно отрезков). Нуль-мерный П. всегда можно разбить на многогранники простейшего вида, а именно на симплексы, симплексы размерностей 0, 1, 2, 3 суть соответственно: одна точка, отрезок, треугольник, тетраэдр (вообще говоря, неправильный). При этом разбиение можно произвести так, что два симплекса этого разбиения или не имеют общих точек, или совокупность их общих точек образует общую грань этих симплексов. Такие разбиения П. на симплексы называются триангуляциями; они составляют основной аппарат исследования в т. н. комбинаторной топологии. Понятие "П." допускает различные обобщения: при топологическом отображении П. переходит в т. н. кривой П. (например, многогранная поверхность переходит в произвольную кривую поверхность): рассматриваются и т. н. бесконечные П., слагающиеся из бесконечного множества выпуклых многогранников (симплексов) и т.д.

Лит.: Александров П. С., Лекции по аналитической геометрии..., М., 1968; его же, Комбинаторная топология, М. - Л., 1947; Понтрягин Л. С., Основы комбинаторной топологии, М. - Л., 1947; Александров П. С., Пасынков Б. А., Введение в теорию размерности, М., 1973.

П. С. Александров.

Полиэдр         
Полиэдром называется объединение многогранников не обязательно одинаковой размерности. В геометрии многогранник (множественное число многогранников) — это трехмерная фигура с плоскими многоугольными гранями, прямыми ребрами и острыми углами или вершинами.
МНОГОГРАННИК         
  • [[Додекаэдр]]
ТРЁХМЕРНОЕ ТЕЛО, ОГРАНИЧЕННОЕ ПЛОСКОСТЯМИ
Многогранники; Грань (геометрия); Грань; Вершина многогранника; Грань многогранника
геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер - вершинами многогранника. По числу граней различают четырехгранники, пятигранники и т. д. Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой из его граней. Выпуклый многогранник называется правильным, если все его грани - одинаковые правильные многоугольники и все многогранные углы при вершинах равны. Существует 5 видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.
Многогранник         
  • [[Додекаэдр]]
ТРЁХМЕРНОЕ ТЕЛО, ОГРАНИЧЕННОЕ ПЛОСКОСТЯМИ
Многогранники; Грань (геометрия); Грань; Вершина многогранника; Грань многогранника
Многогранник или полиэдр — обычно замкнутая поверхность, составленная из многоугольников, но иногда так же называют тело, ограниченное этой поверхностью.
МНОГОГРАННИК         
  • [[Додекаэдр]]
ТРЁХМЕРНОЕ ТЕЛО, ОГРАНИЧЕННОЕ ПЛОСКОСТЯМИ
Многогранники; Грань (геометрия); Грань; Вершина многогранника; Грань многогранника
часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны - ребрами, а вершины - вершинами многогранника.
На рис. 1 представлены несколько известных многогранников. Первые два служат примерами р-угольных пирамид, т.е. многогранников, состоящих из р-угольника, называемого основанием, и р треугольников, примыкающих к основанию и имеющих общую вершину (называемую вершиной пирамиды). При р = 3 (см. рис. 1,а) основанием может служить любая грань пирамиды. Пирамида, основание которой имеет форму правильного р-угольника, называется правильной р-угольной пирамидой. Так, можно говорить о квадратных, правильных пятиугольных и т.д. пирамидах. На рис. 1,в, 1,г и 1,д приведены примеры некоторого класса многогранников, вершины которых можно разделить на два множества из одинакового числа точек; точки каждого из этих множеств являются вершинами р-угольника, причем плоскости обоих p-угольников параллельны. Если эти два р-угольника (основания) конгруэнтны и расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника параллельными прямолинейными отрезками, то такой многогранник называется р-угольной призмой. Примерами двух р-угольных призм могут служить треугольная призма (р = 3) на рис. 1,в и пятиугольная призма (р = 5) на рис. 1,г. Если же основания расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника зигзагообразной ломаной, состоящей из 2р прямолинейных отрезков, как на рис. 1,д, то такой многогранник называется р-угольной антипризмой.
Кроме двух оснований, у р-угольной призмы имеются р граней - параллелограммов. Если параллелограммы имеют форму прямоугольников, то призма называется прямой, а если к тому же основаниями служат правильные р-угольники, то призма называется прямой правильной р-угольной призмой. р-угольная антипризма имеет (2p + 2) граней: 2р треугольных граней и два p-угольных основания. Если основаниями служат конгруэнтные правильные р-угольники, а прямая, соединяющая их центры, перпендикулярна их плоскостям, то антипризма называется прямой правильной р-угольной антипризмой.
В определении многогранника последняя оговорка сделана для того, чтобы исключить из рассмотрения такие аномалии, как две пирамиды с общей вершиной. Теперь мы введем дополнительное ограничение множества допустимых многогранников, потребовав, чтобы никакие две грани не пересекались, как на рис. 1,е. Любой многогранник, удовлетворяющий этому требованию, делит пространство на две части, одна из которых конечна и называется "внутренней". Другая, оставшаяся часть, называется внешней.
Многогранник называется выпуклым, если ни один прямолинейный отрезок, соединяющий любые две его точки, не содержит точек, принадлежащих внешнему пространству. Многогранники на рис. 1,а, 1,б, 1,в и 1,д выпуклые, а пятиугольная призма на рис. 1,г не выпуклая, так как, например, отрезок PQ содержит точки, лежащие во внешнем пространстве призмы.
См. также:
ГРАНЬ         
  • [[Додекаэдр]]
ТРЁХМЕРНОЕ ТЕЛО, ОГРАНИЧЕННОЕ ПЛОСКОСТЯМИ
Многогранники; Грань (геометрия); Грань; Вершина многогранника; Грань многогранника
1. плоская часть поверхности геометрического тела.
Грани куба.
2. то, что отличает, отделяет одного от другого.
Стирание граней между физическим и умственным трудом.
Многогранник         
  • [[Додекаэдр]]
ТРЁХМЕРНОЕ ТЕЛО, ОГРАНИЧЕННОЕ ПЛОСКОСТЯМИ
Многогранники; Грань (геометрия); Грань; Вершина многогранника; Грань многогранника

в трёхмерном пространстве, совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне); от любого из многоугольников, составляющих М., можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, - к смежному с ним, и т. д. Эти многоугольники называются гранями, их стороны - рёбрами, а их вершины - вершинами М.

Приведённое определение М. получает различный смысл в зависимости от того, как определить Многоугольник. Если под многоугольником понимают плоские замкнутые ломаные (хотя бы и самопересекающиеся), то приходят к первому определению М. (вопросы, связанные с определяемыми таким образом М., будут рассмотрены в конце статьи). Основная часть статьи построена на основе второго определения М., при котором его грани являются многоугольниками, понимаемыми как части плоскости, ограниченные ломаными. С этой точки зрения М. есть поверхность, составленная из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое также называется М.; отсюда возникает третья точка зрения на М. как на геометрические тела, причём допускается также существование у этих тел "дырок", т. е. - что эти тела не односвязаны.

М. называется выпуклым, если он весь лежит по одну сторону от плоскости любой его грани; тогда грани его тоже выпуклы. Выпуклый М. разрезает пространство на две части - внешнюю и внутреннюю. Внутренняя его часть есть выпуклое тело. Обратно, если поверхность выпуклого тела многогранная, то соответствующий М. - выпуклый.

Важнейшие теоремы общей теории выпуклых М. (рассматриваемых как по верхности) следующие.

Теорема Эйлера (1758): число вершин минус число рёбер плюс число граней выпуклого М. - эйлерова характеристика М. - равно двум; символически: в - р + г = 2.

Теорема Коши (1812) (в современной форме): если два выпуклых М. изометричны друг другу (т. е. один М. может быть взаимно однозначно отображён на другой М. с сохранением длин лежащих на нём линий), то второй М. может быть получен из первого движением его как жёсткого целого (или движением и зеркальным отражением). Отсюда, в частности, следует, что если грани выпуклого М. жестки, то он сам жёсток, хотя бы его грани были скреплены друг с другом по ребрам шарнирно. Это предполагал верным ещё Евклид и знает всякий, клеивший картонные модели М., но доказал Коши только через 2000 лет после Евклида.

Теорема А. Д. Александрова (1939): если взять конечное число плоских выпуклых многоугольников (сделанных, например, из бумаги) и указать, какую сторону какого из них с какой стороной какого другого мы будем склеивать (склеиваемые стороны, конечно, должны быть одинаковой длины), т. е. если рассмотреть развёртку (выкройку) М., то для того, чтобы так склеенную замкнутую поверхность можно было, соответственно расправив (т. е. изогнув, если нужно, но не растягивая, не сжимая, не разрывая и больше не склеивая), превратить в поверхность выпуклого М., необходимо и достаточно, чтобы: а) удовлетворялось условие Эйлера в - р + г = 2 и б) чтобы сумма плоских углов, сходящихся при склеивании в одной вершине, для любой вершины была меньше 360°. Эта теорема есть теорема существования, т. е. она показывает, с какими развёртками существуют выпуклые М., а теорема Коши есть для неё теорема единственности, т. е. она показывает, что существует только один (с точностью до движения и отражения) выпуклый М. с такой развёрткой.

Теорема (существования) Минковского (1896): существует выпуклый М. с любыми площадями граней и любыми направлениями внешних нормалей к ним, лишь бы сумма векторов, имеющих направления нормалей и длины, равные площадям соответствующих граней, была равна нулю и эти векторы не лежали бы все в одной плоскости. Эти условия необходимы.

Теорема (единственности) Минковского (1896): выпуклый М. вполне определяется площадями своих граней и направлениями внешних нормалей к ним; и углубляющая её теорема (единственности) А. Д. Александрова: два выпуклых М. с попарно параллельными гранями не равны друг другу только в том случае, если для одной из пар параллельных граней с одинаково направленными внешними нормалями одна из этих граней может быть при помощи параллельного переноса вложена в другую.

Теорема Штейница (1917): существует выпуклый М. с любой наперёд заданной сеткой. При этом сеткой выпуклого М. называют сетку, составленную его ребрами. Два М. принадлежат к одному и тому же типу, если топологически тождественны сетки их рёбер, т. е. если один из них отличается от другого лишь длиной своих рёбер и величиной углов между ними. Сетку рёбер выпуклого М. можно спроектировать на плоскость из внешней точки, весьма близкой к внутренней точке какой-либо его грани. Сама эта грань спроектируется тогда в виде внешнего выпуклого многоугольника, а все остальные - в виде малых выпуклых многоугольников, которые его заполняют, не налегая друг на друга, и смежны друг с другом целыми сторонами. Тип сетки рёбер М. при таком проектировании не меняется. Число m типов М. с данным числом n граней ограничено, а именно: если n = 4, 5, 6, 7, 8, ..., то m = 1, 2, 7, 34, 257,... На рис. даны сетки всех типов для n = 4, 5, 6.

Наиболее важны следующие специальные выпуклые М.

Правильные многогранники (тела Платона) - такие выпуклые М., все грани которых суть конгруэнтные правильные многоугольники. Все многогранные углы правильного М. правильные и равные. Как это следует уже из подсчёта суммы плоских углов при вершине, выпуклых правильных М. не больше пяти. Указанным ниже путём можно доказать, что существуют именно пять правильных М. (это доказал Евклид). Они - правильные Тетраэдр, Куб, Октаэдр, Додекаэдр и Икосаэдр .

Куб и октаэдр дуальны, т. е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого или обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением "крыш" на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные М.

В приведённой ниже таблице указаны радиус описанной сферы, радиус вписанной сферы и объём всех правильных М. (а - длина ребра М.).

Изоэдры и изогоны. Изоэдром (изогоном) называется такой выпуклый М., что группа его поворотов (первого и второго, т. е. с отражениями, родов) вокруг центра тяжести переводит любую его грань (вершину) в любую другую его грань (вершину). Каждому изоэдру (изогону) соответствует дуальный изогон (изоэдр). Если М. одновременно и изогон и изоэдр, то он правильный М. Комбинаторно различных изоэдров (изогонов) имеется 13 специальных типов и две бесконечные серии (призмы и антипризмы). Оказывается, что каждый из этих изоэдров может быть реализован так, что все его грани суть правильные многоугольники. Полученные так М. называются полуправильными многогранниками (телами Архимеда).

----------------------------------------------------------------------------------------------------------------------------------------------------------------

| Радиус описанной сферы | Радиус вписанной сферы | Объём |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Тетраэдр | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Куб | | |

| | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Октаэдр | | |

| | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Додекаэдр | | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Икосаэдр | | |

----------------------------------------------------------------------------------------------------------------------------------------------------------------

Параллелоэдры (выпуклые; найдены рус. учёным Е. С. Федоровым в 1881) - М., рассматриваемые как тела, параллельным перенесением которых можно заполнить всё бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т. е. образовать разбиение пространства. Таковы, например, куб или правильная 6-угольная призма. Топологически различных сеток рёбер параллелоэдров пять. Число их граней - 6, 8, 12, 12, 14. Для того чтобы М. был параллелоэдром, необходимо и достаточно, чтобы он был выпуклым М. одного из пяти указанных топологических типов и чтобы все грани его имели центры симметрии.

Если параллелоэдры разбиения смежны целыми гранями, разбиение называется нормальным. Центры параллелоэдров такого разбиения образуют решётку, т. е. совокупность всех точек с целыми координатами относительно какой-то, вообще говоря, не прямоугольной декартовой системы координат. Множество точек пространства, из которых каждая отстоит от некоторой данной точки О рассматриваемой решётки Λ не дальше, чем от всякой другой точки этой решётки, называется областью Дирихле (или областью Вороного) DoΛ точки О в решётке Λ. Область DoΛ является выпуклым М. с центром в точке О. Совокупность областей Дирихле всех точек произвольной решётки образует нормальное разбиение пространства. Существует замечательная теорема: произвольное (даже n-мерное) нормальное разбиение на параллелоэдры, в каждой из вершин которого сходится n + 1 параллелоэдр, может быть аффинным преобразованием превращено в разбиение Дирихле для некоторой решётки.

Всякое движение, переводящее в себя решётку Λ и оставляющее на месте её точку О, преобразует в себя область DoΛ и обратно. Группу всех таких движений называют голоэдрией решётки. Их всего семь: кубическая, ромбоэдрическая, квадратная (или тетрагональная), ортогональная (или ромбическая), моноклинная, триклинная и гексагональная.

Кристаллографические многогранники. Каждая из семи рассмотренных групп имеет подгруппы, всех различных таких групп и их подгрупп 32; их называют кристаллографическими классами. Пусть какой-нибудь кристаллографический класс есть подгруппа некоторой голоэдрии, тогда говорят, что он принадлежит этой голоэдрии (или входит в состав её сингонии), если этот класс не является подгруппой никакой голоэдрии, содержащейся в данной. Если взять плоскость, не проходящую через точку О, и подвергнуть её всем поворотам какого-нибудь кристаллографического класса, то полученные плоскости ограничивают либо некоторый изоэдр с центром в точке, либо бесконечное выпуклое призматическое тело, либо многогранный угол. Полученные тела называются простыми формами кристаллов, в первом случае замкнутыми, во втором и третьем - открытыми. Две простые формы считают одинаковыми, если они имеют один и тот же комбинаторный тип, порождены одним и тем же кристаллографическим классом и повороты этого класса одинаковым образом связаны с формой. Существует 30 различных в этом смысле замкнутых форм и 17 открытых, каждая из них имеет вполне определённое название (см. Кристаллы).

Основываясь на первом (указанном в начале статьи) определении М., можно указать ещё четыре правильных невыпуклых многогранника (т. н. тела Пуансо), впервые найденных французским математиком Л. Пуансо в 1809. Доказательство несуществования других невыпуклых правильных М. дал французский математик О. Коши в 1811. В этих М. либо грани пересекают друг друга, либо сами грани - самопересекающиеся многоугольники. Для изучения вопросов, связанных с площадями поверхностей и объёмами таких М., удобно пользоваться именно первым определением М.

Если у М. можно так ориентировать грани, чтобы каждое ребро в тех двух гранях, которые смежны по этому ребру, имело бы обратные направления, то его называют ориентируемым, в противном случае - неориентируемым. Для ориентируемого М. (даже если он самопересекающийся и его грани - самопересекающиеся многоугольники) можно ввести понятия площади поверхности и величины объёма. Площадью ориентируемого М. называют просто сумму площадей его граней (об определении площади самопересекающегося многоугольника см. Многоугольник). Для определения объёма надо заметить, что совокупность внутренних кусков граней М. разрезает пространство на определённое число связных кусков, из которых один по отношению к М. бесконечный (внешний), а остальные конечные (внутренние). Если из внешней по отношению к М. точки провести отрезок в какую-либо внутреннюю точку внутреннего куска, то сумму "коэффициентов" тех внутренних кусков граней М., которые пересечёт этот отрезок, называют коэффициентом рассматриваемого внутреннего куска М. (она не зависит от выбора внешней точки О); такой коэффициент есть целое положительное, отрицательное число или нуль. Сумму обычных объёмов всех внутренних кусков М., умноженных на эти их коэффициенты, называют объёмом М.

Можно рассматривать и n-мерные М. Некоторые из указанных определений и теорем имеют n-мерное обобщение. В частности, найдены все выпуклые правильные М.; при n = 4 их оказалось 6, а при всех больших n всего три: обобщение тетраэдра, куба и октаэдра. В то же время, например, неизвестны все четырёхмерные изоэдры и изогоны.

Примеры нерешенных задач теории многогранников.

1) Немецкий математик Э. Штейниц дал примеры того, что не для всякого топологического типа сетки рёбер выпуклого М. существует М., который можно описать вокруг шара; в общем виде задача не решена.

2) Параллелоэдры суть выпуклые основные области групп параллельных переносов, но до сих пор не определены основные типы стереоэдров, т. е. выпуклых основных областей произвольных (федоровских) дискретных групп движений. 3) Определение всех типов четырёхмерных изоэдров.

Лит.: Фёдоров Е. С., Начала учения о фигурах, СПБ, 1885; Александров А. Д., Выпуклые многогранники, М. - Л., 1950; Вороной Г. Ф., Собр. соч., т. 2, К., 1952; Brückner М., Vielecke und Vielflache. Theorie und Geschichte, Lpz., 1900; Steinitz E., Vorlesungen liber die Theorie der Polyeder unter Einschiuss der Elemente der Topologie..., B., 1934; Coxeter H. S. М., Regular polytopes, 2 ed., L. - N. Y., 1963.

Б. Н. Делоне.

Выпуклые параллелоэдры (тела Фёдорова).

Правильные невыпуклые многогранники (тела Пуансо).

Правильные выпуклые многогранники (тела Платона).

Полуправильные многогранники (тела Архимеда).

Полуправильные многогранники (тела Архимеда).

Рис. к ст. Многогранник.

грань         
  • [[Додекаэдр]]
ТРЁХМЕРНОЕ ТЕЛО, ОГРАНИЧЕННОЕ ПЛОСКОСТЯМИ
Многогранники; Грань (геометрия); Грань; Вершина многогранника; Грань многогранника
ГРАНЬ, граница жен. рубеж, предел, межа, конт, край, кромка, конец и начало, стык, черта раздела. Граница земель, владения. * Честолюбию его нет границ, ни меры. Он выходит из границ приличия. Межи да грани, ссоры да брани. Рубеж (рубить) и грань (гранить) встарь означали межу и межевые знаки, которые нередко нарубались на деревьях. А на березе рубежи и грани ·т.е. знаки, резы. С каменя на вяз, а на вязе граница крестьян. В этом ·знач. грановитый, граничный знак: Да со леху долом прямо через поперек бору к грановитой сосне. При изломе плоскости, самый гребень ·наз. гранью; но в мелких вещах, напр. у граненых камней, гранью же зовут и самую площадку (фасетку), а затем и самый способ гранения или род огранки камней: мелкая, крупная грань; бриллиантовая, розетовая грань и пр.
| Грань в ·арифм. каждое отделение в три цифры, для удобнейшего произношения написанного числа. В песнях, попадается гран муж. и грань, гранка: Распадися дуб на четыре грана. ·т.е. плахи, части. Граничить, быть пограничну, порубежну, смежну, смежаться. Когда-то мы (земля наша) граничивали с ними, а ныне прошла чересполосица. Граниченье ср. состояние граничащего. Граничный, на границе находящийся, к ней относящийся. Граничанин, граничник, пограничник, житель границы земли, области. Гранить, гранивать что, огранять, делать грани; обрабатывать твердое тело, придавая ему плоскости и гребни; гранят особ. ценные, честные камни. Граниться, быть граниму. Алмаз алмазом гранится, вор вором губится. Огранить камень. Выгранить печать. Отгранить почище. Догранить начатое. Изгранить бороздками. Награнить много камней. Подгранить порчу. Перегранить снова. Я перегранил более сотни топазов. Програнить еще грань. Програнил до вечера. Разгранил на грани. Гранение ср., ·длит. гранка жен., ·об. действие по гл.
| Гранкой зовут также сросшиеся в кучку русские орехи, как родятся они на одном общем стебле. Гранка орехов.
| Кристалл, самогранка;
| ·типогр. верстать, набор в столбцах, неверстанный в страницы. Гранчатый, гранный, граненый, с гранями. Трех-, пяти-, многогранный. Грановитка жен. шпанская вишня, растущая гранками, гроздами. Гранистый, грановитый, гранчатый, гранный, граненый, со многими гранями. Гранистый стебелек, не округлый, а угольчатый. Грановитая палата, в Москве, одетая граненым камнем. Гранчатые подвески. Гранковый, ко гранке орехов, либо к кристаллу относящийся. Гранник муж. вообще, гранная вещь, многогранное тело; тело, кругом ограниченное плоскостями, образующими на стыках углы, изломы. Гранник, относительно тел то же, что угольник или сторонник, относительно плоскостей. В правильном граннике все плоскости равны и одинаковы, и число их ставится перед названием, слитно; просто гранником называют призму. Гранильный, ко гранению, ко гранке относящийся. Гранильня жен. заведение, где гранят камень, стекло и пр. гранильная фабрика. Гранильщик муж. гранила муж. гранильный мастер. Гранило ср. орудие для огранки камней. Гранильщиков, гранильщику принадлежащий; гранильщичий, относящийся ко гранильщикам, к ремеслу, работе их.

Википедия

Полиэдр

Полиэдром называется объединение многогранников не обязательно одинаковой размерности. В геометрии многогранник (множественное число многогранников) — это трехмерная фигура с плоскими многоугольными гранями, прямыми ребрами и острыми углами или вершинами. Слово многогранник происходит от классического греческого πολεεδρον, как poly- (стебель πολύς, "много") + -hedron (формаδδρα, "основание" или "сиденье"). Выпуклый многогранник — это выпуклая оболочка конечного числа точек, а не всех на одной плоскости. Кубики и пирамиды являются примерами выпуклых многогранников.

Многогранник — это трехмерный пример более общего многогранника в любом числе измерений.

Разбиение полиэдра на симплексы называется симплициальным комплексом.

Понятие полиэдра используется в теории симплициальных гомологий.

Иногда полиэдром называют обычный многогранник размерности 3.

Что такое ПОЛИЭДР - определение